PRACTICE FINAL EXAM

MSF 503 Modeling 1

Problems: 5 points each

- 1. Write a VBA *sub-routine* that will put a random stock price path (i.e. 1000 random stock prices) into column A assuming $S_0 = 50$, $\mu = .0001$, and $\sigma = .01$.
- 2. Assuming $\gamma = .01$, $\alpha = .1$ and $\beta = .89$, calculate to t = 1 forecast of volatility using GARCH(1,1) if $r_0 = .01$ and $\hat{\sigma}_0^2 = .0001$.
- 3. Given the following price data:

	Open	High	Low	Close
Day 1	50	52	49	51
Day 2	51	55	48	49

Estimate the Day 2 volatility using the close-to-close, Parkinson, and Garman Klass methods.

- 4. If a call option with a strike price of 40 is trading at 4.56, what is the price of the put option with the same strike if the stock price is 42, r = .05 and t = .5?
- 5. Given the following optimization problem, draw a graph that shows the feasible region.

Maximize: $3x_1 + 2x_2$

Subject to: $2x_1 + x_2 \le 100$

 $x_1+x_2 \leq 80$

 $x_1 \leq 40$

 $x_1,\,x_2 \geq 0$

6. Given the optimization problem above, set up Excel and Solver to find the solution.

	A	В	С	D	E	F	G
1							
2							
3							
4							
5							
6							
7							

- 7. Six months from now, the price of stock ABC could be 49, 52, 53, 54 or 57. What is the price of a call option on ABC if the strike price is 50 and r = .05?
- 8. Given the following information: $\mu_1 = 2$, $\mu_2 = 5$, $\sigma_1 = 1$, $\sigma_2 = 3$, and $\rho_{1,2} = .5$. Generate z_1 and z_2 given $z_{s(1)} = .485$ and $z_{s(2)} = -.705$.
- 9. Write a VBA function that will return a linearly interpolated value given two points.
- 10. Given the following data:

1	8	0	2	3	1
5	6	9	9	9	6
2	2	3	1	8	6
9	3	0	7	1	1
8	2	0	7	8	1

Draw a histogram using bins 0-9.